Case Study – Airgap Calculations

DNV GL Offshore Technical Seminar

Houston, 1 February 2017
Tao Wang, Aker Solutions
Case Study Rigs

- H-3 design from early 70’s
- H-6e design from 2005

Both rigs designed according to principle in DNV GL-OS-C103

- In the ULS condition, positive air gap should in general be ensured for waves with a 10^{-2} annual probability of exceedance
Air-gap on early rigs - Freeboard on H-3’s

- The H-3 has a survival freeboard of 18.3 m
- Based on experience from the ODECO rigs
- Model test 1972
 - Showed large clearance
 - Evaluated to be appropriate freeboard
- Air-gap analyses early 80’s
 - Large air-gap margin
 - No diffraction or LF roll/pitch considerations

- Will still show positive air-gap under guidelines in DNVGL-OTG-13
- All of the 37 Aker H-3 rigs operated in 30-40 years without accidents from horizontal deck impact
Freeboard on Aker H-6e

- Designed in 2005 - 2006
- Based on Aker H-3, H-3.2, H-4.2 designs
- Designed for 1.5 m clearance to waves in ULS conditions
- Deck elevation based on
 - Extensive analysis
 - Model testing
- Designed according to DNV 2005 revisions
- Airgap analysis inline with DNVGL-OTG-13
Airgap analysis

- Panel model of the hull
- Morison model
- Mass matrix
- Loading conditions – VCG
- Airgap grid/points

- Analysis program
 - Linear radiation/diffraction analysis
 - 6 DOF motions
 - Linear surface elevation
 - Post processing
RAOs and damping

- Damping
 - Stochastic linearization
 - Governing seastates
 - Heave RAO

- Validation and Verification of analysis model
 - Convergence testing
 - Sensitivity analysis
 - Model test
Environmental conditions

- Contour line method
 - DNVGL North Atlantic conditions
 - Site specific conditions

- Wave spectra
 - Jonswap
 - Torsethaugen

- Short crested sea / Long crested sea
Factors to include

- Wave asymmetry
- Static heel
- Low frequent roll/pitch
- Wave current interaction
- Spatial statistics
- Extreme estimate – probability level
Presentation of results

- **Airgap**: Difference in elevation between the bottom of the deck or some other relevant part of the structure and the mean water level. **Instantaneous airgap** includes the presence of waves and corresponding wave induced response of the structure.

- **Wave upwelling**: sum of waves and wave induced response of the structure. Airgap = Deck elevation – wave upwelling.
Post processing

- Wave frequent upwelling =
 - Linear surface elevation combined with wave asymmetry
 - + wave frequent motions

- Dynamic upwelling =
 - Wave frequent upwelling + low frequent effects

- Total upwelling =
 - Dynamic upwelling + static effects

- Statistics of total upwelling, 90% fractile
- Surface elevation plot for complete grid
Surface Elevation RAOs

- “Strange” results for periods <8-10s
- Increased diffraction effect for H-6 seen for several locations, not only close to column
- For both: higher uncertainty for very short period sea-states
 - Small impact on governing sea-state @ Hs=17.3

© 2016 Aker Solutions
Model Test Verification

- Important to compare apples-to-apples
 - Model of the model (mass, mooring, static angles from test)
 - Numerical wave spectrum in correlation analyses if shape different than target
 - Challenging if crest elevations deviate noticeably from design basis

- Calibrate model-of-model appropriately and perform design analyses with calibration results applied in design model
 - Mainly damping level and asymmetry factor

- Slamming measurements
 - Model test normally not direct input to design, slamming measurements is an exception
 - Challenging if noticeable difference between model-of-model and design model
Interpretation of Results - Deck or Column

- Not always straightforward to define split between deck and column
- Continued columns should not be considered as deck
- May matter for definition of negative air-gap
Operation draft

- Generally required to maintain positive air-gap in operational draft, unless sufficient structural and positioning capacity can be demonstrated.

SDIR (Norwegian Maritime Authority) letter to owners with Norwegian flagged rigs, 28 Sept. 2016

Dokumentasjon av air gap i operasjonstilstand

Negativt air gap i operasjonstilstanden kan føre til alvorlig brønnhendelse ved at innretningen settes ut av posisjon. Sjøfartsdirektoratet oppfordrer derfor rederiet til å også utarbeide ny dokumentasjon for operasjonstilstanden med samme metode som nevnt over, for å fastsette ved hvilke værforhold innretningen skal gå fra operasjons- til sikkerhetstilstand, jf. § 10.1.1.2 i byggeforskriften. **Operasjonstilstanden skal alltid ha positivt air gap, med mindre en kan bevise tilstrekkelig struktur- og posisjoneringskapasitet.**

- For a rig with positive air-gap @ survival draft
 - Operational criteria → Positive air-gap

- For a rig with negative air-gap @ survival draft
 - Criteria can be more flexible as structure is required to withstand negative air-gap
 - How much negative allowed?
 - Is station keeping a challenge?
Thank you!
Copyright and Disclaimer

Copyright
Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Solutions and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

Disclaimer
This Presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this Presentation are based on current expectations, estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for Aker Solutions ASA and Aker Solutions ASA’s (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as “expects”, “believes”, “estimates” or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for Aker Solutions’ businesses, oil prices, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the Presentation. Although Aker Solutions ASA believes that its expectations and the Presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Presentation. Aker Solutions ASA is making no representation or warranty, expressed or implied, as to the accuracy, reliability or completeness of the Presentation, and neither Aker Solutions ASA nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

Aker Solutions consists of many legally independent entities, constituting their own separate identities. Aker Solutions is used as the common brand or trade mark for most of these entities. In this presentation we may sometimes use “Aker Solutions”, “we” or “us” when we refer to Aker Solutions companies in general or where no useful purpose is served by identifying any particular Aker Solutions company.